Comming seminars

  • Michał M. Stronkowski (Warsaw Uni. of Technology): Profiniteness and finitely generated varieties

    23.10.2019 16:00 @ Applied Mathematical Logic

    Profinite algebras are exactly those that are isomorphic to inverse limits of finite algebras. Such algebras are naturally equipped with Boolean topologies. A variety V of algebras is standard if every Boolean topological algebra with the algebraic reduct in V is profinite. We show that there is no algorithm that takes as input a finite algebra A (of a finite type) and decides whether the variety generated by A is standard. We also show the undecidability of some related properties. In particular, we solve the problem posed by Clark, Davey, Freese, and Jackson about finitely determined syntactic congruences in finitely generated varieties. Our work is based on Moore's theorem about undecidability of having definable principal subcongruences for finitely generated varieties. Joint work with Anvar M. Nurakunov.

  • Tommaso Moraschini (ICS CAS): Profinite Heyting algebras and the representation problem for Esakia spaces

    30.10.2019 16:00 @ Applied Mathematical Logic

    A poset is said to be "representable" if it can be endowed with an Esakia topology. Gratzer's classical representation problem asks for a description of representable posets which - unfortunately - is not expected to take a simple form, as these do not form an elementary class. As at the moment a solution to the representation problem seems out of reach, we address a simpler version of the problem which, roughly speaking, asks to determine the posets that may occur as top parts of Esakia spaces. Crossing the mirror between algebra and topology, this task amounts to characterize the profinite Heyting algebras that are also profinite completions. We shall report on the on-going effort to solve this problem by understanding the structure of varieties of Heyting algebras whose profinite members are profinite completions. This talk is based on joint work with G. Bezhanishvili, N. Bezhanishvili, and M. Stronkowski.